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Sprinkler distribution pattern is key factor for efficient use of irrigation system. Ballistic method for simulation
has been accepted by many researchers. This method demands deep knowledge about droplet dynamics.
The purpose of this work is to present ANN model which simulate sprinkler distribution pattern at various
wind speeds and operating conditions. Main input parameters for ANN are Wind Speed, CV% of Wind
Speed, Operating Pressure, Radial Distance of Grid Point and Effective Angle of catch can. Using five input
parameters ANN structure is trained and compared with observed data of sprinkler distribution pattern. Out
of 31311 data 80% was used for training the model and 20% data was applied for testing of trained models.
The results revealed that the ANN structure (5-24-4-1) performed better than the other ANN structures.
Key words: Artificial Neural Network, Feed Forward Back Propagation, Sprinkler Distribution Pattern,
Simulation, Windy Condition.
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ABSTRACT

Introduction
The water distribution pattern and spacing of

sprinklers are two important factors that can affect the
application uniformity of sprinkler irrigation systems. For
a particular sprinkler with a given nozzle size that works
under an optimal operating pressure in field conditions,
the resulting water distribution depends on wind speed.
Wind causes the distortion of the distribution pattern, and
this increases with increasing wind speed (Keller &
Bliesner, 1990).

To avoid laborious field tests and to improve the design
of irrigation systems, several studies have been conducted
over the last 30 years to develop irrigation simulation
models which can be used for the estimation of water
distribution patterns of irrigation systems under real or
controlled conditions. These models have been
categorized to ballistic, semi-empirical and statistical
(Granier et al., 2003).

The most common approach of sprinkler irrigation
modeling is the ballistic method that is based on simulating

trajectory of individual drops. A sprinkler is considered
as a device emitting water drops in different diameters
from a nozzle, which travel separately until landing on
the soil surface (or crop canopy, or experimental catch-
can). For a given sprinkler configuration in a no-wind
condition, droplet diameter is a major factor that affects
the travel distances of droplets (i.e. the horizontal distance
between droplet landing point and the sprinkler nozzle).
The Flight path of each droplet is subjected to an initial
velocity vector and a wind vector (parallel to the ground
surface) which can be determined using ballistic theory.
Gravity and drag are two other forces that act on each
water droplet in vertical and opposite of drop trajectory
directions, respectively. Regarding the ground, the droplet
velocity is equal to the velocity of the drop in the air plus
the wind vector (Playan et al., 2006). The major advance
of ballistic models has occurred in the last few decades
and several irrigation simulations models have been
developed (Fukui et al., 1980, Vories et al., 1987, Seginer
et al., 1991a, Carrion et al., 2001, Montero et al., 2001,
Dechmi et al., 2004, Lorenzini, 2004, De Wrachien &
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Lorenzini, 2006, Playan et al., 2006, Yan et al., 2010).
Simulating the modified shape of distribution patterns

in accordance with initial shape of wetted area and wind
conditions (speed and direction) is the basis for semi-
empirical methods. It is assumed that the distribution
pattern of water applied from a single sprinkler has a
ûexible shape on the soil surface. The shape of distribution
pattern in no-wind condition depends only on sprinkler
configuration and operating pressure and could be derived
from radial distributions of water measured with laboratory
tests. Wind distorts this shape and the objective of semi-
empirical models is to find a relationship between
observed distortion and wind conditions. Calibration of
such models is typically carried out using spatial
distribution patterns measured in field conditions (Granier
et al., 2003).

The statistical approach could be applied to a set of
sprinklers: line or complete solid set cover (Karmeli, 1978),
center pivot (Heerman et al., 1992), or to a single
sprinkler (Solomon & Bezdek, 1980). By defning a limited
number of parameters, observed water distribution curves
or maps under an isolated sprinkler in various operating
conditions have been adjusted to laws of probabilistic
distribution (Solomon & Bezdek, 1980). The adjustment
could be performed using several simultaneous
measurement series according to statistical criterion (Le
Gat & Molle, 2000). The radial distribution curve from
the sprinkler is identified and then the spatial distribution
pattern in the wetted area can be estimated by generalizing
it.

Artifcial Neural Networks (ANNs) are an emerging,
computational or mathematical tool that has been
implemented for modelling a wide range of complex and
multivariate real-world systems. These networks that
mimic characteristics of the biological neural systems have

some remarkable advantages such as nonlinearity, high
parallelism, robustness, fault and failure tolerance, learning
ability, handling imprecise and fuzzy information, and
generalization capability. Without any assumption and
knowledge about the underlying principles, ANNs are
able to precisely extract the generalized relationship
between input and output data and their accuracy
increases with increasing of available data (Basheer
&Hajmeer, 2000; Jain et al., 2004).

An important aspect of ANNs is multi-layer feed
forward networks. In general, this class of network
consists of multiple interconnected layers which are: an
input layer that contains a set of sensory units (source
nodes), one or more hidden layers of computation nodes,
and an output layer. The input signal propagates layer-
by-layer through the network only in a forward direction.
These neural networks are commonly referred to as a
Multi-Layer Perceptron (MLP).

Material and Methods
The study was conducted at the Instructional Farm,

Department of Soil and Water Engineering, College of
Agricultural Engineering and Technology, Junagadh
Agricultural University, Junagadh, Gujarat.
Experimental Details

Mini sprinklers were used in which the water jet
strikes a bearing that possess one or two channels causing
the mini sprinklers to rotate quickly and distribute water.
It is manufactured from plastic material and is used in
solid sets in orchards and gardens mostly. It runs at an
operating pressure of about 1.0 to 2.0 kg/cm2

In the present study, “Double Nozzle-full Circle” mini
sprinkler (Make; Nimbuss Irrigation Company) were
used. These mini sprinklers are mounted on an installation
stake 1.2 m long, 8 mm x. The mini sprinkler were
connected to the lateral using a PVC tube of 1.2 m, 12
mm x. The mini sprinkler consists of two nozzles. (Fig.
1).
Experimental Design of Sprinkler Set

Two rows of mini sprinklers with two sprinklers on
each row was arranged at 20 m row to row and 18 m
sprinkler to sprinkler spacing. The system was operated
at different pressures in the range of 1 kg/cm2 to 2 kg/
cm2 in an increment of 0.1 kg/cm2 for generating training
data of ANN. The layout of the experimental setup is
shown in Fig. 2.

A network of 20 × 20 catch-cans was placed at the
testing stand at a spacing of 1 m ×1 m. The sprinkler was
placed in the center of the network at a height of 1 m
using a metal frame, and the point under the sprinklerFig. 1: Mini sprinkler assembly.



position was without a catch-can, therefore in total 400
catch-cans were used in the network. Water volumes
collected in the catch-cans were measured after each
experiment. Fig. 3 shows schematic of the single sprinkler
testing network. Climate data and weather conditions
(e.g. temperature, air humidity, and speed and direction
of wind at the height of 2-m from ground level) were
recorded on a 1-min frequency.
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Problem Definition and Formulation
Appropriate definition and formulation of the problem

is an important step in the development of successful
ANN-based projects. In this study, it is assumed that
there are some spatial distribution patterns which are
measured under real field conditions for various wind
speeds, and simulating distribution patterns in none
measured wind speeds is the objective of ANNs-based
model. In fact, ANNs would be used here as an
interpolation tool for developing a model to simulate the
wind distorted distribution pattern of a sample single
sprinkler. A dataset of water volumes collected in catch-
cans (i.e. precipitation rate; PR) for each experiment
were used as the targets of the neural network.

The radial distance (R) of catch-cans to the sprinkler
indicates the horizontal travel distance of emitted droplets
and the two alternative parameters of wind vector (i.e.
speed, V, and its direction) were considered as the two
most important parameters. A trigonometric circle has
been employed to present the direction of wind and
therefore an angle of zero is related to wind direction
from West to East. As illustrated in Fig. 3, the incidence
angle of the jet trajectory vector and wind vector is named
 that is a representative for drag forces acting on a jet
element.

Each catch-can at the test network is related to a
function of C (R,), in which R is a constant for any
given catch-can but ã varies in relation to wind direction
for each individual test. Thus, volume of collected water
in each catch-can for any wind speed (PRC(R,),V)
composed the output neuron of the ANN with the neurons
of the input layer consisting of R,  and V.

Fig. 2: Sprinkler set design for experiment.

Fig. 3: Schematic of testing stand and defned parameters of
problem (S: sprinkler position; R: radial distance to
catch-can [C(R,)]; : angle of jet trajectory vector; :
angle of affecting wind vector; : difference between 
and ) Fig. 4: Scheme of multi-layer perceptron (MLP) neural network.



Observations
Five observations were recorded as follows
(1) Mean wind speed (km/h)
(2) Radius of catch-can to sprinkler (m)
(3) Operating pressure of sprinkler (kg/cm2)
(4) Effective angle of catch-can (o)
(5) Depth of water collected in individual catch –

can (mm)
Design and training of networks

Fig. 4 represents a schematic of the MLP neural
networks. The number of neurons in the input and output
layers was set with respect to the formulation of the
problem, so there were 5 and 1 neuron (s) in the input
and output layers, respectively. However, determining the
most appropriate number of neurons in the hidden layers
is more flexible. In the present study to attain an optimal
network structure, the number of neurons in the hidden
layer (s) was determined by several trials.

A variety of learning algorithms could be implemented
for training MLP neural networks and the most common
algorithm is error backpropagation. Basically, an error
backpropagation algorithm consists of a forward pass
and a backward pass through the different layers of the
network. In the forward pass, a set of data, as input vector
are applied to the sensory nodes of the network, and

therefore a set of outputs is produced as the actual
response of the network. All the weights of the network
are fixed during the forward pass. Then, the error signal
is produced by subtracting the network responses from
target values and propagated backward through the
network to adjust all weights in accordance with an error-
correction rule (Haykin, 1999).

Performance evaluation criteria
(1) Root mean square error (RMSE)
(2) Nash-Sutcliffe efficiency (EF)
(3) Coefficient of determination (R2).
(4) Coefficient of residual mass (CRM)
(5) Absolute error (AE)
(6) Akaike information criteria (AIC)
(7) Bayesian information criteria (BIC)
(8) Mean square error (MSE)

Results and Discussion
Artificial neural network (ANN) sprinkler pattern

distribution models have been developed using five main
input combination for different wind speed and operating
pressure. (1) Mean wind speed, (2) CV% of wind speed,
(3) Radius of catch-can to sprinkler, (4) Operating
pressure of sprinkler, (5) Effective angle of catch-can,
and in the output, there was only one type of data (1)
Depth of water collected in individual catch –can as input

Table 1: Performance evaluation of one hidden layer ANN models.

Sr. Network Training R2

MSE RMSENo. structure epochs Training Validation Testing Over ALL
1 5—2—1 220 0.8395 0.8359 0.8046 0.8330 0.0004 0.0200
2 5—3—1 15 0.8488 0.8252 0.8034 0.8375 0.0005 0.0219
3 5—4—1 17 0.8739 0.8395 0.8237 0.8610 0.0004 0.0211
4 5—5—1 37 0.8681 0.8804 0.8756 0.8709 0.0003 0.0178
5 5—6—1 27 0.8676 0.8676 0.8774 0.8689 0.0003 0.0183
6 5—7—1 90 0.8880 0.8815 0.9022 0.8890 0.0004 0.0191
7 5—8—1 19 0.8875 0.8820 0.8697 0.8838 0.0003 0.0173
8 5—9—1 39 0.9097 0.9114 0.8763 0.9040 0.0002 0.0152
9 5—10—1 46 0.9081 0.9035 0.9049 0.9069 0.0003 0.0169
10 5—11—1 41 0.9067 0.9032 0.9047 0.9060 0.0003 0.0159
11 5—12—1 36 0.9027 0.9105 0.8960 0.9027 0.0003 0.0168
12 5—13—1 70 0.9129 0.9090 0.8441 0.9001 0.0002 0.0148
13 5—14—1 142 0.9152 0.9012 0.9127 0.9128 0.0003 0.0164
14 5—15—1 81 0.9105 0.9145 0.8983 0.9089 0.0002 0.0148
15 5—16—1 96 0.9148 0.9111 0.9150 0.9143 0.0002 0.0156
16 5—17—1 45 0.9174 0.9109 0.9153 0.9162 0.0002 0.0155
17 5—18—1 17 0.9055 0.8985 0.8892 0.9016 0.0003 0.0165
18 5—19—1 19 0.9177 0.8534 0.9014 0.9030 0.0005 0.0228
19 5—20—1 93 0.9227 0.9203 0.9112 0.9207 0.0002 0.0139
20 5—21—1 59 0.9148 0.9113 0.9101 0.9135 0.0003 0.0160
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variables. As per trial-and-error total 134 ANN structure
was trained and tested. As per ANN structure, the
numbers of input nodes are considered equal to number
of inputs.
Training of ANN Model

In this study total 71 sprinkler distribution pattern ware
used to train ANN model. Each pattern has 21×21 data
point of depth of water collected in catch-can, therefore
total amount of data for training were 21×21×71=31311.
Input data was divided in to two part, one for training and
another for checking model efficiency. In this study 80%
data was used to train ANN model and remaining 20%

data was used for model efficiency check. This 20%
data was selected in such a way that it represents the
entire population.
Architect of ANN Model

A multi-layer perceptron with backpropagation
training algorithm was used for simulation of single
sprinkler distribution pattern. A tangent-sigmoid transfer
function was selected between the input and hidden layers,
and a linear transfer function selected between the hidden
and output layer; due to sufficient neurons in the hidden
layer this structure for a neural network is reported to
have the ability to approximate any function (Mathworks,

Table 2: Performance evaluation of two hidden layers ANN model.

Sr. Network Training R2

MSE RMSENo. structure epochs Training Validation Testing Over ALL
1 5—4—2—1 25 0.8758 0.8785 0.8759 0.8762 0.0003 0.0176
2 5—5—2—1 82 0.8898 0.9029 0.8608 0.8871 0.0003 0.0163
3 5—6—2—1 33 0.8793 0.9018 0.8986 0.8853 0.0002 0.0156
4 5—7—2—1 21 0.877 0.9076 0.903 0.8848 0.0002 0.0152
5 5—8—2—1 0 0.0717 0.096 0.0916 0.0961 0.0018 0.0427
6 5—9—2—1 44 0.9092 0.891 0.8904 0.9028 0.0003 0.0185
7 5—10—2—1 64 0.9074 0.8983 0.895 0.9044 0.0003 0.0164
8 5—11—2—1 137 0.9216 0.8902 0.8819 0.9104 0.0003 0.0177
9 5—12—2—1 61 0.9184 0.8345 0.922 0.9035 0.0006 0.0237
10 5—13—2—1 51 0.9075 0.9146 0.8759 0.9037 0.0002 0.0151
11 5—14—2—1 26 0.9027 0.9131 0.9073 0.9047 0.0002 0.0147
12 5—15—2—1 28 0.896 0.91 0.9076 0.8996 0.0002 0.0149
13 5—16—2—1 38 0.9136 0.9002 0.9046 0.9101 0.0003 0.0172
14 5—17—2—1 78 0.9224 0.9155 0.9007 0.9181 0.0002 0.0155
15 5—18—2—1 66 0.919 0.9121 0.9163 0.9176 0.0002 0.0151
16 5—19—2—1 18 0.8879 0.9054 0.8973 0.8915 0.0003 0.0158
17 5—20—2—1 30 0.9094 0.9182 0.8804 0.9062 0.0002 0.0154
18 5—21—2—1 27 0.9233 0.8693 0.9122 0.9126 0.0004 0.0202
19 5—22—2—1 45 0.92 0.9193 0.9037 0.9175 0.0002 0.0145
20 5—23—2—1 41 0.9019 0.9081 0.9104 0.9039 0.0002 0.0153
21 5—24—2—1 18 0.9085 0.8652 0.9071 0.9012 0.0004 0.0202
22 5—25—2—1 28 0.9223 0.9223 0.8937 0.9174 0.0002 0.0143
23 5—26—2—1 47 0.9266 0.9258 0.9112 0.9244 0.0002 0.0142
24 5—27—2—1 30 0.9178 0.8866 0.911 0.9111 0.0004 0.0193
25 5—28—2—1 22 0.9287 0.9135 0.8712 0.9177 0.0002 0.0151
26 5—3—3—1 32 0.8502 0.873 0.8576 0.8576 0.0003 0.018
27 5—4—3—1 167 0.897 0.9064 0.8924 0.8924 0.0003 0.0165
28 5—5—3—1 63 0.8817 0.8982 0.8805 0.8805 0.0003 0.0159
29 5—6—3—1 106 0.9007 0.8714 0.8941 0.8941 0.0004 0.0199
30 5—7—3—1 41 0.904 0.8938 0.8956 0.8956 0.0003 0.0166
31 5—8—3—1 69 0.9174 0.9085 0.9079 0.9079 0.0002 0.0158
32 5—9—3—1 19 0.8898 0.8833 0.8921 0.8921 0.0003 0.0185
33 5—10—3—1 26 0.9108 0.8707 0.9035 0.9035 0.0004 0.0199
34 5—11—3—1 28 0.8924 0.8989 0.896 0.896 0.0003 0.0165
35 5—12—3—1 17 0.886 0.912 0.8922 0.8922 0.0002 0.0153
36 5—13—3—1 30 0.906 0.8704 0.9007 0.9007 0.0004 0.0204
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2007). Feed  forward  back  propagation  neural  network
with Levenberg–Marquardt  algorithm  was used  to  train
the  network. Start with one and then two hidden layer
were applied for maximum iterations of 1000. ANN
models were solved using MATLAB 7.9.0 version.

For each distinct network, after post-processing, the
MSE and R2 values for the training, validation and testing
subsets were calculated. Observed water depth at
different cache-can was used as an output for supervised
learning of ANN. Developed models were compared with
observed data for checking their accuracy of prediction.
The best ANN architecture during training period for
various hidden layer neuron combination is presented in
Table 3.1 for predicting sprinkler distribution pattern.
Various statistical criteria for each combination of input
variables were estimated during the testing period are
presented in Table 3.2.

The results showed that the neural network containing
one hidden layer was not increasing the R2 value after
(5- 20 -1) structures it goes down with increased neurons
in hidden layer. Then go for two hidden layers.

Training results shows in Table 4.3 and 4.4 indicates
that, ANN architecture with two hidden layers having
(5-24-6-1) structure gave comparatively better result than
Table 4: Performance evaluation of various ANN model.

Sr. No. Network structure CRM AE MSE RMSE AIC BIC EF R2

1 5—21—4—1 0.008 -0.004 0.094 0.306 -0.785 1.282 0.839 0.839
2 5—26—2—1 -0.060 0.030 5.577 2.362 1.259 3.326 0.801 0.804
3 5—24—4—1 -0.011 0.006 0.192 0.438 -0.425 1.643 0.795 0.801
4 5—17—6—1 -0.051 0.025 4.044 2.011 1.098 3.166 0.793 0.802
5 5—13—5—1 -0.021 0.011 0.691 0.831 0.215 2.282 0.793 0.798
6 5—19—4—1 -0.017 0.008 0.446 0.668 -0.004 2.063 0.792 0.799
7 5—12—7—1 -0.019 0.009 0.554 0.744 0.104 2.172 0.789 0.795
8 5—24—6—1 -0.017 0.008 0.421 0.649 -0.033 2.035 0.787 0.796
9 5—18—4—1 -0.021 0.011 0.691 0.831 0.215 2.282 0.786 0.794
10 5—23—6—1 -0.022 0.011 0.752 0.867 0.257 2.324 0.781 0.791

Table 3: Rank of trained ANN structures based on overall R2 value.

Sr. Network Training R2

MSE RMSENo. structure epochs Training Validation Testing Over ALL
1 5—24—6—1 53 0.9402 0.9197 0.9056 0.9323 0.0002 0.0148
2 5—24—4—1 26 0.9294 0.9194 0.9154 0.9261 0.0002 0.0149
3 5—26—2—1 47 0.9266 0.9258 0.9112 0.9244 0.0002 0.0142
4 5—21—4—1 53 0.9296 0.9234 0.9024 0.9242 0.0002 0.0152
5 5—23—6—1 35 0.9332 0.8895 0.9155 0.9235 0.0003 0.0184
6 5—18—4—1 38 0.9233 0.9227 0.9231 0.9232 0.0002 0.0146
7 5—13—5—1 82 0.9245 0.9170 0.9231 0.9232 0.0002 0.0150
8 5—19—4—1 60 0.9306 0.9271 0.8879 0.9230 0.0002 0.0143
9 5—17—6—1 39 0.9295 0.9166 0.8992 0.9230 0.0002 0.0151
10 5—12—7—1 64 0.9275 0.9190 0.9003 0.9222 0.0002 0.0146

the one hidden layer. If the ANN training is over fitted
then it may be possible that the best trained network might
not give the proper results. To ensure that the trained
network is not over fitted, validation has been simulated
with 10 ranked ANN structures (shown in Table 4.5).

Table 4.6 shows that ANN with 5-21-4-1 structure
gave better result in compare to the best structure from
the training which was 5-26-6-1.

All performance criteria were calculated as 10 rank
model which was better in all training structure. On the
basis of all performers’ criteria except AIC ANN structure
(5-21-4-1) gave batter result. Table 3.4 shows that ANN
with 5-21-4-1 structure gave better result in compare to
the best structure from the training which was 5-26-2-1.

Conclusion
On the basis of training and performance criteria of

the all structure, ANN network should be used which
has 21 neurons in first layer, 4 neurons in second layer,
back propagation algorithm, TRANLM training function,
TANSIG transfer function was used for simulating
sprinkler distribution pattern at various wind speed and
operating pressure.
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